((1^2-a^2)/(a^2-1))+1

Simple and best practice solution for ((1^2-a^2)/(a^2-1))+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((1^2-a^2)/(a^2-1))+1 equation:


D( a )

a^2-1 = 0

a^2-1 = 0

a^2-1 = 0

1*a^2 = 1 // : 1

a^2 = 1

a^2 = 1 // ^ 1/2

abs(a) = 1

a = 1 or a = -1

a in (-oo:-1) U (-1:1) U (1:+oo)

(1^2-a^2)/(a^2-1)+1 = 0

(1-a^2)/(a^2-1)+1 = 0

(1-a^2)/(a^2-1)+(1*(a^2-1))/(a^2-1) = 0

1*(a^2-1)-a^2+1 = 0

0 = 0

0/(a^2-1) = 0

0/(a^2-1) = 0 // * a^2-1

0 = 0

a belongs to the empty set

See similar equations:

| ((x^2-a^2x)/(a^2-1))+1 | | 130*19/26*22/25 | | y-44=-42 | | X/12=-16+19 | | 108=6x+3x | | 12=108 | | 6x^2-2x^2-1=0 | | y*4+7=46 | | 5(5a-b)-6(2b-4a)= | | -1/2/7m=6 | | 24/(3/5) | | 1+(2/3) | | 1+2/3 | | 6x+15x-12=9 | | 59+5y-24=16y-14-4y | | 3-(1/x)=x/(1-x) | | 4/5(40)-1/4(40)+14=9/10(40) | | 4/5(20)-1/4(20)+14=9/10(20) | | 3x*3x-7x+2=0 | | x*x-3/4x-7/64=0 | | (-6)-(-2)=a | | b=bh | | 2x*2x-5x+3=0 | | -14=-7/8x | | 7(u-4)=-8-13 | | 2x-(-9)=95 | | (3y+6)(3y+6)=36 | | (-9y-4y-5)+(7y^2+y)= | | (-6b^3-3b^2-6)+(2b^3-3b^3+9)= | | (-6b^3-3b-6)+(2b^3-3b^3+9)= | | -5(v-6)=4v-24 | | 30(p*p-1)=11p |

Equations solver categories